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ABSTRACT – The fundamental component of food security is adapting agricultural systems to sustenance 

production improvements and reducing inputs and the negative consequences of climate change.  Precision 

agriculture developments in recent years have considerably boosted the efficacy of managing spatially variable 

agronomic irrigation inputs such as pesticides, seeds, water and fertilizers. The growing number of innovations 

using cutting-edge technologies to monitor field crop for varied temporal and spatial changes is responsible for 

these advancements. This review compares the applicability, cost, limitations, and advantages of using 

spectroscopy technology for nutrient monitoring in cocoa plantations with conventional methods. This paper 

highlights basic information on cocoa crops, then focuses on fertilizer applications, and management in each of 

the chosen cocoa-producing countries. Concerns about the nutrient adequacy of the soil and the monitoring of 

nutrient availability in the soil and leaves by using conventional and Near-Infrared Spectroscopy (NIRS) are 

discussed. The limitations of the conventional analysis method and technology of NIRS are also discussed. A 

general overview of how each of these sectors benefits from the use of NIRS, along with specific applications 

related to each sector, is also presented. Therefore, we briefly present the advantages of this technology and 

demonstrate its potential for nutrient monitoring in cocoa plantations.  
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INTRODUCTION 

The cocoa tree, or Theobroma cacao L., is a major tree 

cultivated for chocolates, beverages, cocoa mass, and 

cocoa powder. It originated in the upper Amazon basin 

region and has an economic lifespan of 30-40 years 

(Somarriba et al., 2021). It is one of the most important 

commodities in the world and is grown by 5-6 million 

smallholder farmers (Tosto et al., 2022). The world’s 

top ten cocoa producers are currently Cote d'Ivoire 

(27.9%), Ghana (16.5%), Cameroon and Nigeria in 

West Africa (15.3%), Indonesia in Southeast Asia 

(16.6%), Ecuador (4.4%), Brazil (7.0%), Peru (1.2%), 

the Dominican Republic (1.7%), and Colombia (1.6%) 

in Latin America (Figure 1) (Kozicka et al., 2018). For 

many farmers, cocoa is their only source of financial 

income. In 1980, 63% of cocoa was grown by estates, 

but it shifted to smallholders. In 2020, about 88% of 

cocoa was grown by smallholders in Malaysia, with a 

production of 706 metric tons (Malaysian Cocoa 

Board, 2021). Regrettably, this industry has experi-

enced a decline from the 1990s to the present day. Sev-

eral factors have been identified to explain the decreas-

ing trends, including the impacts of pests and disease,  

 

 

inadequate maintenance practices (Asante et al., 2022), 

and the high production cost of inorganic fertilizer 

(Olagunju et al., 2021).  

 

Figure 1. World cocoa producer 
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In 2020, the fertilizer consumption of Malay-

sia was 1,952.1 kg/ha, which increased from 177 kg/ha 

in 1971 and is growing at an average annual rate of 

6.24% (Knoema, 2021). Numerous studies have re-

vealed that prolonged exposure to inorganic fertilizer 

will negatively affect microbial communities and 

change the physical and chemical characteristics of 

soil, leading to environmental issues (Lian et al., 2022). 

According to Qaswar (2022), inorganic N fertilizer sig-

nificantly alters the soil’s AL³⁺ phase, releasing net AL 

from Al-hydroxides on clay minerals in acidic soil, re-

ducing base cation saturation, and enhancing soil acid-

ity. Mineral fertilizer use has expanded dramatically 

during the last few decades. According to Food and 

Agriculture Organization (FAO) statistics for 2018, 

global requests for N, P, and K fertilizer increased by 

7.3%, from 186,895 thousand tons in 2014 to 200,522 

thousand metric tons in 2018.  

Monitoring plays an essential role in agricul-

tural management and production (Mdemu et al., 

2020). Monitoring is critical in agricultural administra-

tion and production. Through effective and thorough 

monitoring, producers can pinpoint corrective and pre-

ventive actions to optimize input while maximizing 

production. The primary methods for observing and 

evaluating the growth and development of cocoa are 

destructive methods, depending on human labor or in-

struments, and labor-intensive, and time-consuming, 

necessitating the preparation of samples using risky 

and expensive chemicals (Ibrahim et al., 2022). The 

gathering of ground data mainly relies on traditional 

monitoring techniques. Current technologies cannot 

provide accurate time and space information (Dibs et 

al., 2017). The traditional approach to obtaining nutri-

tional content analysis was unsafe. The plant parts were 

oven-dried, weighed, and pulverized in the lab after the 

cocoa seedlings were harvested. Furthermore, they 

were combined to create a composite sample for total 

N analysis using the Kjehdahl method (Prastowo et al., 

2021) and for analysis of phosphorus, potassium, cal-

cium, magnesium, zinc, copper, and iron using the dry 

ashing method (Flores et al., 2022). This method re-

quires laborious methods and expensive chemicals. 

Therefore, to expand the precision of nutrient analysis 

determination, it is required to develop non-destruc-

tive, intelligent, real-time, rapid and precise systems 

for determined quality parameters.  

Optics, Acoustic analysis, ultrasonics, X-ray 

imaging, near-infrared spectroscopy (NIRS), ultrason-

ics, hyperspectral imaging (HIS), Raman spectroscopy, 

magnetic resonance (MR)/magnetic resonance imaging 

(MRI), and optical coherence tomography are general 

modern non-destructive methods that are widely used 

to investigate the estimation of available nutrients and 

fruit quality (Ibrahim et al., 2021). Additionally, one 

can make a real-time choice created on practical wave-

length data for a variety of items and assess several 

quality factors for the same products (Tamburini et al., 

2015). A few papers highlighted the use of spectros-

copy to determine the cocoa bean quality parameter 

(Ernest et al., 2020), analyze nutrients (Nanganoa & 

Njukeng, 2018), and measure and evaluate the quality 

of cocoa beans (Munawar et al., 2022). In this review, 

1) we explore the nutrient management and application 

in cocoa plantations; 2) the limitations of current man-

agement; 3) the sensing system for monitoring nutrient 

content; and 4) the application of spectroscopy to mon-

itor nutrient content in other crops. The current study 

aimed to monitor changes in nutrient content and qual-

ity metrics using non-destructive methods based on 

NIR wavelength. 

NUTRIENT MANAGEMENT AND APPLICA-

TIONS 

A major problem for the agricultural land-use system 

is handling soil productiveness to achieve adequate 

crop production Without hurting the environment (Wes-

sel & Quist-Wessel, 2015). In cocoa plantations, a high 

nutrient requirement is needed for growth and yield, 

where the increase was very rapid in the first five years 

and reached a plateau after the fifth year, with subse-

quent increases based mostly on nutrient export in 

higher output (Ling, 1984). Nutrient management dif-

fers from one country to another. In this topic, we dis-

cussed nutrient management for cocoa plantations, 

starting with the largest cocoa manufacturing country, 

Cote d'Ivoire, and ending with the smallest one, Malay-

sia. 

Cote d'Ivoire 

With an average yield of 200-500 kg/ha and a declining 

trend over time, Cote d’Ivoire has the lowest yields per 

land area in the world. This yield is significantly less 

than on-station yields production, which averages 2000 

kg per hectare (Gyou et al., 2015). The primary full-

sun, monoculture cocoa systems in Cote d’Ivoire are 

the cause of this condition, since their short-term out-

put increases result in a serious long-term depletion of 

soil nutrients. Currently, the extension services recom-

mend one single fit-all formula called "engrais cacao" 

with a formulation of 0% N, 23% P2O5, 19% K2O, 10% 

CaO, 6% MgO, and a minor quantity of S and Zn (Kêbê 

et al., 2005). The suggested dose was 400 kg/ha per 

year. Nevertheless, applying a single-fit-all formula to 

whole soil categories is inappropriate. A variety of fac-

tors, including the soil's origin, cultural practices, the 

surrounding environment, and the crops that are grown 

influence the unique fertility potential of each type of 

soil.  

 

Ghana 

In the 1980s, the Cocoa Research Institute of Ghana 

(CRIG) recommended a single fertilizer formula, 

called Asase Wura (0% N, 165% P2O5, 200% K2O 
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kg/ha, and a small amount of calcium, sulfur, and mag-

nesium). In local trials, this fertilizer was able to in-

crease cocoa yields by an average of 206%, but with 

major variations among farmers (Appiah et al., 2000). 

However, the recently recommended inorganic ferti-

lizer by the Cocoa Research Institute of Ghana was 

75% N, 165% P2O5, 200 K2O, 344% CaO, and 250% 

MgO (Snoeck et al., 2009). However, based on the 

study done by Quaye et al. (2021), the occurrence of 

farmers’ replies to the application of fertilizer fluctu-

ated from 47% to 92%. The usual fertilizers used were 

granular fertilizers such as Asase Wura (91%), co-

coafeed (87%), cocoa master (71%) and liquid fertiliz-

ers such as Sidalco (91%), 

Nigeria 

In addition to the topsoil needing to be rich in organic 

matter, cocoa demands profound, well-drained soil and 

a high nutritional content. The soil texture of Nigerian 

cocoa farms should be clayey, ideally with sandy clay 

loam within four inches of the soil surface and sandy 

clay under 10 to 15 inches, to confirm that the crops 

receive enough humidity in the dry months (Ogbeide & 

Ibiremo, 2021). In Nigeria, fertilizer practices were 

recommended by the Cocoa Research Institute of Ni-

geria, with the application of 50-100 kg of N, 120 kg 

of P2O5, and 250 kg of K2O for mature (6 years and 

above) land previously cropped. 

Indonesia 

In Southeast Asian cocoa smallholders' systems, ferti-

lizer use is uncommon, and extensive nutritional short-

ages are typical (Oberthür et al., 2018). Unfortunately, 

West Africa and Malaysia, with circumstances unre-

lated to Indonesia's agricultural regions, shaped most 

of our understanding of nutrients. Because of the un-

predictable impacts of weather and disease, Indonesian 

farmers frequently perceive the use of fertilizer as dan-

gerous, and there is still countless doubt among farm-

ers. A crucial part of a change procedure would be 

knowledge that surges farmers' certainty as they ac-

complish fertilizer. In Indonesia, the common use of 

inorganic fertilizer, as recommended by the Mars Co-

coa Academy, amounted to 160 kg N, between 30 and 

60 kg P, 90 and 165 kg of K, 11 and 17 kg Mg, and 110 

and 470 kg Ca per year. 

Malaysia 

In Malaysia, for mature cocoa in the field, the common 

fertilizers applied to apply the necessary nutrients to 

sustain its growth are NPK Blue with the formulation 

of 12% N, 12% P2O5, 17% K2O, 2% MgO, and 8% S 

with the amount of 1.2 kg per tree (Lee et al., 2013). 

However, in 2016, the Malaysian Cocoa Board offi-

cially launched a controlled release fertilizer known as 

MCB F1-HyFer during Malaysian Chocolate and Co-

coa Day 2016. This fertilizer formulation was derived 

through several years of study by identifying nutrient 

need in cocoa, and the addition of zeolite increased fer-

tilizer efficiency by 20-24% as compared to common-

use fertilizer (Helmi et al., 2016).  

This review shows that five countries produc-

ing cocoa have used inorganic fertilizers in common 

for yield production. An effective utilization of every 

nutrient by the plant is guaranteed by balanced feeding. 

Inadequate nutrition causes the depletion of the soil's 

insufficient nutrients, as well as low yields, inefficient 

fertilizer use, and low farmer profits. Measurement of 

nutrient availability in soil and leaves is necessary to 

determine the efficacy of fertilizer use. It is an im-

portant parameter to measure the deficiency or excess 

fertilizer applied to cocoa trees. 

LIMITATIONS OF CURRENT MANAGEMENT 

Besides pruning, fertilization is one of the most im-

portant agricultural practices on cocoa plantations 

(Tosto et al., 2023). To monitor whether nutrients 

through fertilizer application are enough, measure-

ments have to be adopted to measure the nutrient avail-

ability in the soil and leaves of the cocoa tree. Nutrients 

like nitrogen, phosphorous, and potassium are essential 

for plant growth since they are a major source of suste-

nance for plants and soil. Traditional measuring tech-

niques, such as field and laboratory tests, can offer pre-

cise estimates of the soil and leaf nutrient contents at 

tested points, but it takes a long time and costs more 

money to produce for an entire research project. In Ma-

laysia, the analysis price for a soil sample is RM160.00 

(total nitrogen, total phosphorus, available phosphorus, 

total potassium, calcium, pH, total carbon, magnesium, 

cation exchange capacity (CEC), moisture, organic car-

bon and cost for leaves samples are RM100 (nitrogen, 

phosphorus, potassium, calcium, magnesium, cuprum, 

iron, and zinc). If there are 25 samples for soil and 25 

samples for leaf nutrient analysis, it is required for RM 

6,500.00 per location of the specific study. If there are 

more than five specific studies, it will cost more than 

RM 32,500 to run the analysis. Each soil sample in 

China costs around ¥165 (RM 107) to be analyzed in a 

lab to determine its nitrogen, total phosphorus, and to-

tal potassium concentrations. The overall charge of col-

lecting the spatially overt estimations of the soil quali-

ties for the entire part, if a plan with a spatial resolution 

of 100 m x 100 m for the zone of 50 km x 50 km is 

created using the conventional method, will be ¥2965 

million (RM 1918 million) (Peng et al., 2019). This 

cost does not include the cost of travel and transporta-

tion, labor work and time for the assortment of soil and 

leaf samples in the field. Furthermore, to be properly 

understood, soil test values must be calibrated to crop 

response (Ichami et al., 2022); yet, in many developing 

countries, the lack of data required to do this is a sig-

nificant hindrance. Testing of plant tissue in conjunc-

tion with soil analysis is necessary to identify micronu-

trient deficits that might interfere with plant responses 
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to macronutrients. High chemical analysis costs limit 

the use of soil and leaf testing to assess limiting nutri-

ents over a large area (Bekunde et al., 2010). Therefore, 

to increase the accuracy of the nutrient content, it is im-

perative to advance intelligent, non-destructive, quick, 

real time, and precise systems for monitoring quality 

criteria. 

SENSING SYSTEM FOR MONITORING NUTRI-

ENT CONTENT 

With the introduction of remote sensing technologies 

in agriculture, it is now possible to extract data on the 

"status of the field crop" and track crop development. 

One of the most interesting new advances in this field 

is hyperspectral imaging (HSI), which combines spec-

troscopy and imaging (Hagen and Kudenov, 2013). A 

spectral image produces a three-dimensional (3D) da-

taset, often known as a data cube, whereas imaging de-

livers concentration at each pixel of the image. In con-

trast, spectroscopy yields a single spectrum. Multispec-

tral imaging (MSI) and traditional RGB imaging tech-

niques are among the other pioneering technologies. 

Spectrum imaging technology and optical sensing have 

enabled the development of more advanced MSI and 

HIS devices with a wide range of agricultural applica-

tions, including field crop monitoring (Liu et al., 2021) 

and food quality inspection (Qin et al., 2013). The main 

benefit of spectrum imaging in agriculture is the non-

destructive extraction of precise phenotypic data across 

a wide spatial range and in a predetermined amount of 

time (Yang et al., 2017). The data will be processed 

and used for comprehensive data-driven analysis, and 

to make technological choices to raise agricultural 

productivity (Elgendy et al., 2022). The science of 

gathering and computing data on certain characteristics 

of events, matters, or resources without coming into 

physical contact with the target of surveillance is 

known as remote sensing (RS) technology (Kundu et 

al., 2021). The electromagnetic radiation applied for 

remote sensing travels through space at the speed of 

light in the form of harmonic wave patterns of varying 

wavelengths (Wójtowicz et al., 2016). The most useful 

wavelengths in remote sensing cover visible light 

(VIS), with wavelengths between 400 and 700 nm, 

near-infrared (NIR), with wavelengths between 700 

and 1100 nm, shortwave-infrared (SWIR) rays (1100-

2500 nm), mid-infrared (MIR) rays (2.5-50 µm), far-

infrared (FIR) rays (from 50 µm to 1 mm), microwave 

rays (from 1 mm to 1m), and radio waves (1-30,000 m) 

(Omia et al., 2023). Despite being useful for scene 

analysis, not all of this information is visible to the na-

ked eye. In this chapter, we focused on near-infrared 

(NIR) in determining the nutrient content in soil and 

leaves. 

Near-infrared (NIR) Spectroscopy 

Near-infrared (NIR) spectroscopy has become the fur-

thermost appealing and commonly used technique for 

food and agriculture analysis and quality management 

over the last four decades. It is a non-destructive ana-

lytical instrument that allows for a quick and simulta-

neous qualitative and quantitative assessment of a wide 

variety of samples’ chemical composition and physical 

properties (Ozaki et al., 2021). NIR spectroscopy is be-

coming increasingly relevant for agricultural monitor-

ing (Beć et al., 2022). The advancement of near-infra-

red spectroscopy allows for the creation of a unique, 

dependable, and rapid tool. This enables the execution 

of diverse studies, particularly in data collection, with-

out compromising research resources (Pasquini, 2018). 

NIRS examines the light imitated from a trial after be-

ing irradiated by wavelengths ranging from visible 

(VIS 400-700 nm), near-infrared (NIR 700-1,100 nm) 

and shortwave infrared (SWIR 1,100 - 2,500 nm). This 

can provide information on the physical and chemical 

properties of the sample. A single spectral measure-

ment can concurrently record a variety of different 

plant attributes, and it requires little to no sample prep-

aration (Petit Bon et al., 2020). Additionally, the meas-

urements are non-destructive, allowing for the tracking 

of trait changes over time while avoiding interference 

with the organism. 

Although NIRS data are easy to collect and 

produce a lot of information quickly, they also need a 

lot of post-processing, including chemometrics and 

multivariate statistical studies. Usually, the building of 

calibration models connecting spectra and reference 

trait data allows for the exploitation of spectral infor-

mation. A representative subset of the entire data set, 

in terms of the spectral variation range treated, is used 

to build calibration models (Foley et al., 1998). The at-

tribute values of fresh samples are forecast from their 

spectra using models that connect crop spectra to inde-

pendently measured traits in the calibration dataset. 

Partially least squares regression (PLSR; Wold et al., 

1983), 2D correlation plots (Darvishzadeh et al., 2008), 

and principle components analysis (Dreccer et al., 

2014), are a few statistical techniques commonly used 

to predict trait data from spectra. However, it has been 

shown that the efficiency of these approaches, notably 

PLSR, in assessing plant attributes varies substantially 

depending on species and growth situations (Fu et al., 

2020). Machine learning techniques are gaining prom-

inence in a variety of industries due to their improved 

predicted accuracy. Machine learning, specifically 

deep learning approaches, can improve the statistical 

analysis of high quantity data by employing a sequence 

of neural networks (Mishra and Passos, 2021). 

Principles of Near-infrared Spectroscopy (NIRS) for 

Plant Characterization 

The leaf's spectral reflectance is determined by its low 

reflectivity in the observable region of the spectrum 

(400–700 nm), which is caused by sturdy fascination 

with photosynthetic pigments, and its high reflectivity 

in the near-infrared region (700–1,100 nm), which is 
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caused by high light scattering in the leaf mesophyll 

tissue (Vasseur et al., 2022). The cellulose, water, pro-

tein, and lignin contents of plant tissues, for instance, 

have an impact on the reflectance intensity in the SWIR 

region of the spectrum (1100-2,500 nm) (Rascher et al., 

2010). Because of their high water content, healthy 

leaves emit infrared radiation at their temperature 

(emissivity between 0.97 and 0.99). In contrast to the 

blue, yellow, and red blue, light bands, which are cap-

tivated by photoactive pigments, the green light band 

(550 nm), which is imitated effectively, gives the 

leaves their green color. As a result of this absorption 

at various wavelengths, a spectrum of light reflectance 

is created, and can be interpreted as a "signal" of the 

physical and chemical characteristics of the leaf. To 

study leaf composition, functionality, and diversity, it 

is particularly helpful to understand the physical rela-

tionship between leaf characteristics and light reflec-

tion. Depending on their structure and chemical 

makeup, various leaves will have various spectral sig-

natures. For instance, the wavelengths absorbed by 

chlorophyll A and B in the visible spectrum (400–700 

nm), the spectral red edge (700–760 nm), and proteins 

in the SWIR (1,300–2500 nm) are related to the 

amounts of nitrogen in leaves (Kokaly, 2001). Due to 

the extremely short effective photon penetration dis-

tance at these wavelengths, structures like palisade cell 

density have a significant role in determining the spec-

trum reflectance in the SWIR (SWIR 700-1,300 nm). 

The amount of infrared light that is absorbed depends 

on the molecule's overall modification in dipole mo-

ment as a result of its vibrational motion. A net energy 

transfer from the radiation to the molecule will be seen 

when the vibrations are accompanied by a change in 

dipole moment and when the frequency of the vibra-

tions matches the frequency of infrared radiation. This 

results in a change in the amplitude of the molecular 

vibration. That is, the molecule gets excited to a higher 

energy level as a result of the vibration absorbing the 

infrared radiation (Kulkarni et al., 2014).  

Application of NIRS 

Various fields have widely used NIRS to determine the 

chemical properties of substances. For example, NIRS 

is widely used to characterize food products (Shen et 

al., 2022), pharmaceuticals (Velez et al., 2022), agri-

culture (Jang et al., 2022), and environmental monitor-

ing and ecological studies (Grabska et al., 2021; 

Munawar et al., 2021). Meanwhile, in plant science, the 

application of NIRS is important because it helps in-

crease production, increasing the cost efficiency for bi-

odiversity characterization (Jackson et al., 2022), iden-

tifying plant stress (Zahir et al., 2022) and disease (Tan 

et al., 2022), and predicting differences in leaf palata-

bility, digestibility, and decomposability through lignin 

and fiber content between species. Ibrahim et al. (2022) 

claimed that Vis-NIR spectroscopy has demonstrated 

its efficacy and usefulness in labs and production lines 

for monitoring quality parameters in watermelon culti-

vars. Additionally, it may be applied to a variety of 

items and utilized to assess many quality characteris-

tics for the same product, enabling real-time decision-

making based on applied wavelength data. A crop nu-

trition detection model for pears was created by com-

bining chemical analysis test results with near-infrared 

reflection spectrum imaging technology to collect the 

leaf scale spectral image, computer image analysis 

software to process the spectral digital image, and spec-

tral data extraction (Fan et al., 2022). Another study by 

Mohd Hilmi Tan et al. (2022) applied NIRS ranging 

from 900-1700 nm to detect fungus infection on oil 

palms. They found that the optimal wavelengths are 

identified at 1310 and 1452 nm, where 1310 nm could 

be related to ergosterol concentration and 1452 nm is 

attributed to water content. This work used ergosterol 

to detect Ganoderma boninense in oil palm, and it has 

proven to be a reliable alternative methodology for an-

alyzing the incursion of such metabolites. To estimate 

quality metrics, dry matter, and crude protein in fresh, 

un-dried grass, Murphy et al. (2022) conducted a study 

to produce near-infrared spectroscopy (NIRS) calibra-

tions. This study found that NIRS accurately estimated 

fresh grass dry matter content (R²=0.86 SEP=9.46g 

kgˉ¹, RPD = 2.60) and crude protein content (R²=0.84 

SEP=20.38g kgˉ¹, RPD=2.37). The study's calibrations 

made it possible to analyze pasture quality more 

quickly, allocate and use pasture more precisely, and 

further the development of precision grassland agricul-

ture concepts. 

 

In a different work by Tang et al. (2022) NIRS 

was used to quickly identify the nitrogen content of 

rubber leaves to estimate the rubber yield and fertilizer 

content of rubber trees. The experiment's results 

showed that by combining dimensionality reduction 

and clustering to achieve a more complete and con-

sistent distribution of the area proportion information, 

the expected values of leaf pixels for nitrogen content 

can be updated. Based on the study, a nitrogen detec-

tion model for rubber leaves may be established using 

the clustering method based on KPCA-GMM because 

the accuracy of the model can also be substantially en-

hanced. Meanwhile, Munawar et al. (2021) investi-

gated the use of NIRs in the 1000-2500 nm wavelength 

region for quick and non-destructive measurement of 

cocoa bean fat content. According to the findings, the 

fat contents of cocoa beans may be predicted and de-

termined using a correlation coefficient (r) of 0.89 and 

a ratio of prediction to deviation (RPD) index of 2.87 

for raw spectra and a r of 0.92 and an RPD of 3.18 for 

baseline spectra adjustment. As a result, NIRS is a via-

ble option for assessing cocoa bean quality in a timely 

and non-destructive manner.  

 

In conclusion, researchers have made signifi-

cant efforts to find a better way to use NIRS in agricul-

ture. Such NIRS application capacity can be employed 
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efficiently in the optimization process of cultural activ-

ities, particularly fertilization, to assess the quality of 

cocoa growth and production. 

 

FUTURE PERSPECTIVES AND CONCLUSIONS 

Contrary to traditional laboratory tests, which are time-

consuming and only yield single-point observations, 

spectroscopy techniques have various advantages. Nu-

merous geotechnical and geological devices can incor-

porate spectroscopic techniques because of technolog-

ical advancements in the creation of tiny sensors. This 

technique can be developed using fiber optic sensors 

that can determine the material’s elemental composi-

tion. The difficult parts of it include designing and cre-

ating a portable cone and a user-friendly interface data 

reading system that allows non-experts to gather the 

data. On board, where the data may be studied in real-

time for in-depth analysis, chemometric methodology 

and statistical methods can be employed for data anal-

ysis.  

 

In conclusion, the spectroscopy technique has 

been proven in different fields, including nutrient anal-

ysis, fruit quality, and the detection of pests and dis-

eases. NIRS has been utilized to accurately assess the 

nutrient content and level of fruit quality while taking 

into account the cost of analysis and assessing fruit 

quality. NIRS is a valuable technology for qualitative 

and quantitative assessments involving a variety of 

sample types utilized in a wide range of industries. It is 

a promising method for effectively gathering infor-

mation about how plants and crops function, the re-

sponse of crops toward the environment, plant metab-

olism, and ecological strategies. NIRS allows for time 

and money savings (spectrum capture only takes a few 

seconds) while avoiding the use of harmful chemicals. 

Additionally, samples can be analyzed in their natural 

form without a destructive method. Thus, NIRS facili-

tates the application of phenomics to ecology by ena-

bling the creation of huge databases of features at var-

ious temporal, geographical, and taxonomic scales.  
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