PCR-BASED GENOTYPING OF SNP MARKERS IN THEOBROMA CACAO

Roslina M.S¹., Nuraziawati M.Y², Aizat J.³, Ahmad K.M.J.³, Navies M.⁴, Alias A², Rosmin K.¹, Neoh J.⁵

¹Malaysian Cocoa Board, Commercial Zone 1, Norowot Road, Kota Kinabalu Industrial Estate, 88460 Kota Kinabalu, Sabah

²Malaysian Cocoa Board, P.O. Box 30, Sg. Dulang Road, 36307 Sg. Sumun, Perak

³Malaysian Cocoa Board, Lot 248, Block 14, Daerah Muara Tuang, Daerah Muara Tuang, Bahagian Samarahan, Locked Bag 3131, 93450, Kuching, Sarawak.

⁴Malaysian Cocoa Board, Centre of Cocoa Research and Development, Mile 10, Apas Road, P.O.Box 60237, 91012 Tawau, Sabah

⁵NEOSCIENCE SDN BHD (946222-U) P91, Block C, Level P, Kelana Square, Jalan SS 7/26, Kelana Jaya ,47301 Petaling Jaya

Selangor Darul Ehsan

Corresponding author: roslina@koko.gov.my

Malaysian Cocoa J. (2021) 13(1): 80-89

ABSTRACT - The availability of reference sequence and sophisticated software does not always guarantee that the discovered SNP can be converted into a valid marker. Validation needs to be performed to ensure that the discovered SNP is in the Mendelian locus. The validation of a marker is the process of designing an assay based on the discovered polymorphism and then genotyping a panel of diverse germplasm and segregating population. Apart from that, the goal of the study was to develop a reliable, rapid, and inexpensive polymerase chain reaction (PCR)-based method to genotype for SNPs previously associated with desirable phenotypes in cocoa. Tetra-primer amplification refractory mutation system PCR (ARMS-PCR) is a simple and sufficient method for detecting different alleles in SNP locus. The allelespecific gene-tagged markers for the target genes are more effective than the genomic random markers as they will not show polymorphism in some recipient backgrounds and sometimes give up results as a falsepositive marker. Allele-specific primer designs for the selected SNP from each trait. The primer is designed by using the software Primer1. DNA extracted from cocoa leaves was submitted to PCR amplification followed by agarose gel electrophoresis and determination of banding pattern. Tetra-primer ARMS-PCR was successfully optimized after changes in annealing temperature; annealing and extension times; concentration of MgCl2 and DNA; ratios of inner, outer, forward and reverse primer; and addition of adjuvants. There will be two types of product size expected if using an allele-specific primer set; one indicates that there is no SNP and another size will indicate there will be SNP/SNP is confirmed present in that specific sample. If there is any mismatch (SNP), a specific band size will be produced as compared to no mismatch (no nucleotide changes).

Keyword: Tetra ARM, PCR, SNPs, Cocoa, Traits

INTRODUCTION

Modern plant breeding in this century makes use of phenotypic data from breeders, genetic variations from plants and development of molecular marker technology to improve plant varieties which contribute to improvement in different plants traits (Mochida *et. al.*, 2010). Most importantly, the technology developed will increase genotypic identities while reducing time and cost for farming. Conventional breeding not only takes a huge effort from the farmers, the uncertainty of whether their plants are able to maintain the good agronomic traits throughout the farming cycles, labours and high operational costs is very common in modern days farming (Pérez *et. al.*, 2012). Therefore, with the development of molecular markers as a tool for targeting on the presence of important qualitative and quantitative traits based on a few loci, especially when the cost of phenotyping greatly exceeds the cost of genotyping (VLK D *et. al.*, 2016). Different genotyping approaches and platforms will contribute to different kinds of results, hence these trade-offs must be understood by plant breeders to make the best decisions for better crops in the future (Pandey S *et al.*, 2019).

Single-nucleotide polymorphisms (SNPs) are currently the most widely used molecular markers due to their ubiquitous distribution throughout a given genome, as well as their low cost compared to other marker technologies (Bali S *et al.*, 2018; Drenkard *et al.*, 2000). These markers are applicable across the full breadth of living organisms, providing universal interest in SNP technology development (Jiang G.L *et al.*, 2013; Batieno *et al.*, 2018).

method Most for Single nucleotide polymorphisms (SNPs) genotyping has been relying on expensive equipment such as a mass spectrophotometer, capillary electrophoresis, Pvrosequencer or real-time thermocycler (Broccanello et al., 2018) With the use of this equipments, the assays develop will be becoming expensive too due to fluorescent labelling, dideoxy terminators, a complicated and custom primers design or other reagents used in the assays (Mochida et.al, 2010; Pandey S et.al, 2019).

Recently, the single-nucleotide amplified polymorphisms (SNAP) assay, a simple, allele-specific method, was developed for SNP analysis in mapping populations of Arabidopsis (Drenkard *et al.*, 2000). SNAP markers are primers containing a single base mismatch with the 3' end of one allele (the specific allele) (Bundock *et.al*, 2005; Chiapparino *et.al.*, 2004). The tetra-primer amplification refractory

mutation system PCR (T-ARMS-PCR) is a fast and economical means of assaying SNP's, requiring only PCR amplification and subsequent electrophoresis for the determination of genotypes.

Tetra-primer ARMS-PCR method

In this paper, it is shown that an allele-specific gene-tagged markers for target gene are more effective than the genomic random markers surrounding the target gene (from several kb to a few Mb distance) because some markers will not show polymorphism in some recipient background and sometimes a false positive allele can be selected by recombination between the target gene and genomic random marker (Liu *et al.*, 2012; Kim *et al.*, 2016). However, no information is known for any allele-specific markers for cocoa ever reported.

Customised design of PCR primers for allelespecific PCR needs to be improved by using data and analysis of multiplex PCR performed last year (Broccanello *et al.*, 2018). From this validation/ pilot run, the majority of the expected PCR product size is not tally with the reported phenotype traits. It might be due to the SNPs that present in specific traits does not correlate with gene expression results and thus for cocoa, gene expression profile for each trait might not be a good candidate to be selected as markers.

Single polymerase chain reaction (PCR) is used as a method to test every SNP-gene marker for each trait (with as minimum as; 5 SNPs x 2 primer sets x 5 traits).

Figure 1: Diagram illustrating the position and orientation of PCR primers for the three primer allelespecific PCR relative to the matching template DNA.

MATERIALS AND METHODS

SNP Selection and Primer Design

Data and sequences from previous cocoa genomes and SNPs mining projects were used as a base for SNP selection and primer design for this study. Two groups of SNPs were categorized using two different approaches;

The first design for **VSD and CPB** was chosen based on;

SNPs in up/downstream regions (which might cause phenotypic variations)

100% occurrences in the control samples

Differentially expressed from the microarray data

While the second design is made for **BLACKPOD**, **HASIL** and **LEMAK** were chosen based on;

Identify SNPs that occur in all the samples from the same trait (Common SNPs)

Remove common SNPs that found in other traits (Unique SNPs for one trait)

Filter based on the sequencing read depth

Flanking primers were designed using the program Primer 1, http://primer1.soton.ac.uk/primer1.html which was also used to calculate the Tm for allele-specific primers which were designed to be as close to the Tm of the opposing flanking primer as possible.

Plant Material, PCR amplification and validation by Sanger Sequencing

Cocoa leaves from known phenotypes were obtained from Lembaga Koko Malaysia (LKM)

Bagan Datuk, Perak and used for DNA extraction by following the manufacturer procedures. For verifying SNP and allele specific-PCR reaction, amplifications were carried out in a gradient thermocycler, which enabled the temperature range for allele-specific amplification to be determined. The annealing temperature ranged from 59-65 degrees. The cycling parameters were as follows: 95° C – two minutes, $[94^{\circ}C$ for 30 sec, 59° -70°C for 30 sec, $72^{\circ}C$ for 30 sec] for 35 cycles, $72^{\circ}C$ – five minutes, ambient hold.

Optimum quantities of 1:2 ratio of each primer were added to the reaction mix at a final concentration of 0.2uM. 'Hot start' Taq DNA polymerase was used for amplification. The PCR products then were subjected to Sanger sequencing to further confirm genes related to the trait tested.

RESULTS AND DISCUSSIONS

PCR Primers

Primers were designed using Primer1 software and were tested each by Sanger sequencing for validation. Figure 2 showing a summary of PCR designed from Primer 1 programme and their Sanger primer pair. More accurate visualization of outer and inner primers was shown in Figure 3.

For each trait tested, five possible SNP locations with their respective allele-specific PCR primers were listed in Figure 4.

Optimization of T-ARMS primer control sample This step was done to ensure that the primer is working. Adjustment of the PCR reaction conditions such as annealing temperature, primer ratio and sample concentration was performed. Both data from PCR fragment and NGS data from Sanger sequencing must be analysed and matched.

Primei	r-BLAST from					
SNP allel	e:					
Primer pair	1					
	Sequence (5'->3')	Length	Tm	GC%	Self complementarity	Self 3' complementarity
Forward primer	CATGTTAGAATGGAGGAAGGGACAAG	26	61.36	46.15	4.00	0.00
Reverse primer	GCAAAGCATCAATTTGTAGGTTTCTCAC	28	62.10	39.29	7.00	2.00
Products on targe	t templates					
>LT594789.1 Theot	proma cacao genome assembly, chromosome: II					
product length = 1 Forward primer 1 Template 33	65 CATGTTAGAATGGAGGAAGGGACAAG 26 423285					
Reverse primer 1 Template 33	GCAAAGCATCAATTTGTAGGTTTCTCAC 28 423121A 33423148					
Sanger:						
Sanger: Primer pair 1						
Sanger: Primer pair 1	Sequence (5'->3')	Length	Tm	GC%	Self complementarity	Self 3' complementarity
Sanger: Primer pair 1 Forward primer	Sequence (5'->3') CATGTTAGAATGGAGGAAGGGACAAG	Length 26	Tm 61.36	GC% 46.15	Self complementarity 4.00	Self 3' complementarity
Sanger: Primer pair 1 Forward primer Reverse primer	Sequence (5'->3') Catgitagaatggaggaagggacaag Aatcagcacctittitcttitttttgaaat	Length 26 30	Tm 61.36 60.35	GC% 46.15 26.67	Self complementarity 4.00 7.00	Self 3' complementarity 0.00 5.00
Sanger: Primer pair 1 Forward primer Reverse primer Products on target	Sequence (5'->3') CATGTTAGAATGGAGGAAGGGACAAG AATCAGCACCTTTTTCTTTTTCTGAAAT templates	Length 26 30	Tm 61.36 60.35	GC% 46.15 26.67	Self complementarity 4.00 7.00	Self 3° complementarity 0.00 5.00
Sanger: Primer pair 1 Forward primer Reverse primer Products on target > <u>LT594789 1</u> Theobr	Sequence (5'->3') CATGTTAGAATGGAGGAAGGGACAAG AATCAGCACCTTTTTCTTTTTCTGAAAT templates oma cacao genome assembly, chromosome: II	Length 26 30	Tm 61.36 60.35	GC% 46.15 26.67	Self complementarity 4.00 7.00	Self 3' complementarity 0.00 5.00
Sanger: Primer pair 1 Forward primer Reverse primer Products on target >LT5947891 Theobr product length = 22 forward primer 1 Template 334	Sequence (5'->3') CATGTTAGAATGGAGGAAGGGACAAG AATCAGCACCTTTTTCTTTTTCTGAAAT templates oma cacao genome assembly, chromosome: II 9 catgtTagaATGGAgGAAGGGACAAG 26 23285	Length 26 30	Tm 61.36 60.35	GC% 46.15 26.67	Self complementarity 4.00 7.00	Self 3' complementarity 0.00 5.00

Figure 2: Summary of PCR designed by Primer 1 and their Sanger primer pair

3. g21690 poz: 2659	
<pre>lcl ctg_len_3827_22914:2359-2959 600 → 300 A→G GTATCTCCTTGCCAAATTGAGCTGCTACCTAATCAGTATCAGCTGCCTTATTGGC ATGTAGAATAATGAATAAGGGAACAGGAAGGGAAG</pre>	CATTTCTCTTAATCAGTTTTA AAGCCGCTATGCAGGCCATTA ATGCAACGCGTGTGAATGCAC AATAACAAGGAGCATGCAA Ctcagaaaaaaagaaaaaaggt Ctttttaaaaattataaatat STTAACTGAAATGATAGAAAC aataaaaattagtactTCTA
Forward inner primer (A allele): Melting 274 ATTCTGAAATAACAAGGAGCATGCCAA 300	g temperature 66
<mark>Reverse inner primer</mark> (G allele): 327 gcaaagcatcaatttgtaggtttctcac 300	65
<mark>Forward outer primer</mark> (5' - 3'): 163 CATGTTAGAATGGAGGAAGGGACAAG 188	65
<mark>Reverse outer primer</mark> (5' - 3'): 382 AATCAGCACCTTTTTTTTTTTTTTGGAAAT 353	65
Product size for <u>A</u> allele: 110 Product size for G allele: 165 (<mark>FC</mark> & <mark>RI</mark>) Product size of two outer primers: 220 (for <u>sanger</u>)	

Figure 3: Location of Forward and Reverse for Outer primers and location for Forward and Reverse primers for Inner primers

Trait: VSD

SNP	Position	Forward Inner	Reverse Inner	Forward Outer	Reverse Outer
1 VSD_g29198	Icl ctg_len_4444_26276:2157 (T>C)	TCTATTTGCTGCATTCATGAATATGAACC	CITGITICGGIGIGCTITCCITIGCGA	TGTGAATATGTTAGTGCTGAAGGCGAAGG	CCTTCTTTCGGTAAAGTTATAATGGGGCG
2 VSD_g248	Ici ctg_len_9252303_163:1759980 (G>A)	CTTACGTGCAACGAAAGTTACTATTTCAAA	CAACTGAACTTTGAGTCAATTTCCGC	GGCTATTGTCTGATCAACCCATTGAATA	ACAACATTGCTAGCAGATAATGGCTCTC
3 VSD_£306	Icl ctg_len_9252303_163:2329341 (C)T)	CTGCCGATTCCTATTTCATCTTTGGT	AATCTCGAGGCAAGAATTAGTATATCTG	TAACAGAGAGCCATTAAAGTAGAAAGCG	TAAAGGCCATGTGTTCATAACTTTTGTT
4 VSD g2239	Icl ctg_len_10940617_1267:5988856 (T>C)	ACGAGTAGATACAAGTTCATCCTAAGAT	AGTCTATGATTTTCTGAGTCCAAAAG	TITAGAGATATATTTGGTTGGAAATGAT	TCATCAAACAAAAAAGTGATTAAGTTTA
5 VSD g41941	Icl ctg_len_2810_43862:2231 (OT)	CATGTATACCAGAGTTGGAATCGGGC	AGGTTTTCTTTGGGCTTCCTGGTCTA	TGCTCTCTGGTGTGTGTGTTATGTACCCA	ACCCGACAATATGTGGTGGAATATTACG

Trait: CPB

1.14	_						
	SI	IP	Position	Forward Inner	Reverse Inner	Forward Outer	Reverse Outer
	1 0	3P_g659	lcl ctg_len_9252303_163:7655727 (G>A)	AAGAAGAAGAGAATTTCGAACTTTAGCCA	TTITATCCCTCTTCAAGAGGGTTTTTTC	CCTTTGAACTCATACTCGCTTAGATCAA	TTTGAATGTATGTATAAATGACCTTGGCA
	2 C	3P_g515	lcl ctg_len_9252303_163:5117784(T>A)	TTGGGATAAGAAAAGTGTAATTTATAGGTT	ATATTGGATTATACCGTGAGAGACGT	GACCATTITTAACTTACTGACTTGTTCC	ATTTAAGGGTACTTTTATGGTCAAAATG
	3 0	3P_g21690	lcl ctg_len_3827_22914:2659 (A>G)	ATTCTGAAATAACAAGGAGCATGCCAA	GCAAAGCATCAATTTGTAGGTTTCTCAC	CATGTTAGAATGGAGGAAGGGACAAG	AATCAGCACCTTTTTTCTTTTTTCTGAAAT
I	4 C	3P_g4230	lcl ctg_len_4505_5195:368 (T>G)	ATCCTATGCAAATTTAAATTACAGCCG	GAAAAATAGCTCACTATAACTGAAGCTCCA	ATGTAATTAATCTGAAGGACACAAGGGA	TCTCTTTCCAATTACAAGTGTATCAGCA
I	5 C	3P_g6449	Icl ctg_len_22025072_7341:200267 (C>T)	TACGCATGAGTGAAATGATCTTTTGCT	TTCTTTCTTCCTTTTTGGTTCCAATTG	CATGAGGAATCATTTTCGAGAAGAAAGA	TTTGCTCATTGCTATGGTCTCAAGTTAA

Trait: BP

SNP Position		Forward Inner	Reverse Inner	Forward Outer	Reverse Outer
1 BP_SNP1 Icl ctg_len_	15929230_21830:5860447 (A>T)	TTTGACACAATGTAAAGGAGTAAGGTTGTT	ACACGTGAGCTTTGCCTTAACCAAGTT	CATAGGCACTAACACCAAAGAAAAAGGTC	TACACGAAAACACACACATTCACTGAAC
2 BP_SNP2 Icl ctg_len_	13028994_24846:12211586 (T>C)	CCCAACCCGAGGCGATATCTGTCATGCC	GGAAGAATGCGGGGAGAGGGGATGCA	ACCCCTCTCTGCCAGGTTGCTTCCTCCAA	CGGAAAGGATCGCTAGCCATGTCTTGGTCG
3 BP_SNP3 Icl ctg_len_	994145_42265:218234 (G>A)	GTGCTGTTTCGGTTGACTTGCGAGGTA	GTGGAGCCCTTCAAACCTTAGTATCGGC	TCTTCTCCACCGTAAAGATATCGCTGCC	TTTGAAGCCAAAACCATTAACAAAGCCG
4 BP_SNP4 Icl ctg_len_	13028994_24846:8645527 (C>T)	AGGGGTTTCATTATGTGACTCAACGGT	CTGTTATTGAGCCTTCCACATCGATTG	CAGATTCAGGTTCATGGTCATGAGTGTTA	ATCAAACACCTATCCAGCATGGCAATTA
5 BP SNP5 Iclicte Ien	2699747 834:2125458 (C>T)	CTAACATCAAGTGGCGGTTGTGGAATC	CACCATTGTACCTCTCTTGTTGCCCA	CGCAACTGGAGACAAGGCATAATCATTT	CCGAGGTATTGGAATGGGAATTTTTGAG

Trait: Hasil

Ε	SNP	Position	Forward Inner	Reverse Inner	Forward Outer	Reverse Outer
1	HASIL_SNP1	lcl ctg_len_16346715_50720:7766731(T>A)	CACCTACCAATGGCTTTCGCAATGATAA	TTTGACAATTGAAGGGGGTATCGAATGA	GAGGTAAGTCTGCAGCCATCAGCTATTCAG	CCCTTCTCTCCCAGTGGCTTTAGCTGT
1	HASIL_SNP2	lcl ctg_len_12080_11245:9,236 (C>T)	GGATTGATGCTGTTCATGGACACAACCAC	GTGAGGGAAAATGGTTGCCTTGTAGCCA	AGCTCCAAAAGCTTCAGCAAAGACTTGGC	TAGCAAAGCAGATGAACTTGCCTGGTAGCA
	HASIL_SNP3	lcl ctg_len_12696376_5496:12,378,978 (A>G)	TCGAGGCTTTAACACATCAGATAGAGATTG	GATACGAAGGAGCCAGAGGATGGGAT	TTAGTGCTGTTGATGCAGAAGGGATATG	AAAAATTAGCCCTGAAGCGGAAAAATGT
4	HASIL_SNP4	lcl ctg_len_15052430_36031:8,978,480 (C>T)	GAGGTCTGGGGTGGGGGTTTGGTGAT	CGGTTCCCTCTCTGTTTACCCTTTAAATG	GTITCACTGGGGATGGCTTGGACTTTT	ACCGTTCTTTCCCCTCCCCTTTCTTTTC
5	HASIL_SNP5	lcl ctg_len_15052430_36031:8978422 (T>A)	GCTTTAGTGTTTCTTTTTCCCTTTGACA	CAACCAGAGATACAACACACAAAGCATTA	CTTGGACTTTTGTTGCACTTACATCCT	сстессстиститетитетитетст
(HASIL_SNP6	Icl ctg_len_15052430_36031:8,978,480 (C>T)	GAGGTCTGGGGTGGGGGTTTGGTGAT	CGGTTCCCTCTCTGTTTACCCTTTAAATG	GTTTCACTGGGGATGGCTTGGACTTTTT	ACCGTTCTTTCCCCTCCCCTTTCTTTTC
-	HASIL_SNP6	ICI[Ctg_len_15052430_36031:8,978,480(C>I)	GAGGICIGGGGIGGGGGIIIGGIGAI	COGITECCTETETITACCETTIAAATG	GTTTCACTGGGGATGGCTTGGACTTTT	ACCONTENTECCECTECCTTECTTTE

Trait: Lemak

SNP	Position	Forward Inner	Reverse Inner	Forward Outer	Reverse Outer
1 LEMAK_SNP1	lcl ctg_len_11964671_28462:10599914(G>A)	CTGAGGGACAGCCCTTCCTGTCACTTA	TCTATAAATTGCTTGAGTATTCTCACCCAC	GTTCTAGCAGAGCAAGAGGCAGGTCTA	CAGCGCATCACTITTAGATCCATAGTITC
2 LEMAK_SNP2	lcl ctg_len_7557474_17708:6,037,395 (C>T)	CCCAAGAACACTAAGGCACAACCAAC	TATCAAATGGATCAAAAGGAGGCGAA	TGTATTGACATTGTTAATGCAATTTGGGG	GGAATGTCATTGTTGGTACTTGGATGGT
3 LEMAK_SNP3	lcl ctg_len_1443295_10887:400,163 (G>A)	CTAAAGTGCCTACATCCACTCCCGTA	TTTAGTGGATTGAAAATTCCTTAGTGAACC	AGCTAAATGCAATAAATAGTAAGAAGGGGG	AATCCCGTTAAAAAGAAAGTGTAAGGGT
4 LEMAK_SNP4	lcl ctg_len_15052430_36031:5922085 (G>A)	ATGCAGGGATTGTGGCTTTATGTTGA	TCAGATAATCAATTAAGTGGCAAGATTACC	TTGCAACTTATCATGTGAATAACAATGGAT	ACAATTITGCTITCAAGGAACAAGTTGA
5 LEMAK_SNP5	lcl ctg_len_22025072_7341:19128876(T>A)	GTGCAGTCCTCTATATCGATCTCCTACTT	TCCCAGGCTTAGCTTAGAAAACAAGT	CTGCTTACTACCTTAAGAAACATTGGGA	TATAGGCAAGTATTTGGTTTCATATCGC
6 LEMAK SNP6	Icl ctg len 11964671 28462:1594917 (C>G)	GTTCCATGATGCAGCAAGAAAGTGACC	GCAACCTGATAGATATGGCCTAGCCTAGTC	TGCTTTTGTAAAGACAGGGAAATACGGG	GGATGATTACGTTTTCATTGTCAATCCTGA

Figure 4 : Listing of each traits with SNP location and possible allele-specific PCR primers

Validation of T-ARMS PCR result

<u>Trait VSD: VSD_g41941</u> <u>||cl|ctg_len_2810_43862:2231 (C>T) (up</u> <u>regulated)</u>

Optimization steps of T-ARMS primer using a proper control sample

Figure 6: PCR results for VSD before Validation of T-ARMS.PCR result: confirmation with Sanger sequencing Sequencing results of S10 and H08, both showed homozygous genotype, T/T. The data shown by Sanger sequencing was in concordance with the genotype shown by the T-ARMS PCR.

Figure 7: Validation pf PCR results by comparing with Sanger sequencing

fifteen samples showed that twelve of the data shown by Sanger sequencing was in concordance with the genotype showed by the T-ARMS PCR

Figure 9: PCR results for CPB with different samples

<u>Trait CPB: CPB_g659 </u> <u>lcl|ctg_len_9252303_163:7655727 (G>A) (up</u> <u>regulated)</u>

Optimization steps of T-ARMS primer using a proper control sample

Figure 8: PCR results for CPB before confirmation with Sanger sequencing

<u>Trait BP: BP_SNP2 -></u> lcl|ctg_len_13028994_24846:12211586 (T>C)

Optimization steps of T-ARMS primer using a proper control sample

Figure 10: PCR results for BP before confirmation with Sanger sequencing

Validation of T-ARMS PCR result:

Sequencing result of eighteen samples showed that fifteen of the data showed by Sanger sequencing was in concordance with genotype showed by the T-ARMS PCR.

Figure 11: PCR results for BP with different samples

<u>Trait HASIL: HASIL_SNP1 -></u> <u>lcl|ctg_len_16346715_50720:7766731 (T>A)</u> Optimization steps of T-ARMS primer using a proper control sample

Figure 12: PCR results for HASIL before confirmation with Sanger sequencing

Validation of T-ARMS PCR result:

Sequencing result of eighteen samples showed that twelve of the data shown by Sanger sequencing was in concordance with genotype showed by the T-ARMS PCR.

Figure 12: PCR results for HASIL with different samples

<u>Trait LEMAK: LEMAK SNP4 -></u> <u>lcl|ctg_len_15052430_36031:5922085</u> (<u>G>A</u>)Optimization steps of T-ARMS primer using a proper control sample

Figure 13: PCR results for LEMAK before confirmation with Sanger sequencing

Validation of T-ARMS PCR result: Sequencing result of twenty samples showed that fifteen of the data shown by Sanger sequencing was in concordance with genotype showed by the T-ARMS PCR.

Figure 14: PCR results for LEMAK with different samples

CONCLUSIONS

A.SNP Selection

More than one SNP is required to represent each trait. Selection is based on the result of targeted sequencing performed from the last project. One problem is the list of SNPs from targeted sequencing is a lot. From one region, there is more than one SNP present.

If the region is selected, we must ensure that there is no more than one SNP present.

B.Control sample/Positive control

A proper positive control sample needs to be present in SNP marker development. It is advisable to utilize the control or reference sample which is used as a reference in WGS data mapping.

C.T-ARMS PCR validation

More than 20 samples are recommended for the primer validation to ensure that the selected SNP accurately represents the trait. More is needed for this stage.

REFERENCES

- Bali S., Robinson B.R., Sathuvalli V., Bamberg J., Goyer A. (2018). Single Nucleotide Polymorphism (SNP) markers associated with high folate content in wild potato species. PLoS ONE 13 (2): 1-17.
- Batieno T.B.J, Souleymane O., Tignegre J.B., Huynh B.L., Kusi F., Poda S.L., Close T.J., Roberts P., Danquah E., Ofori K. and Ouedraogo T.J. (2018). Single nucleotide polymorphism (SNP)-based genetic diversity in a set of Burkina Faso cowpea germplasm, African Journal of Agricultural Research; Vol. 13(19), pp. 978-987
- Broccanello C., Chiodi C., Funk A., McGrath J. M., Panella L., & Stevanato P. (2018). Comparison of three PCR-based assays for SNP genotyping in plants, Plant Methods 14:28
- Bundock P., Cross M., Shapter F. and Henry R, (2005), Allele-specific PCR markers for single nucleotide polymorphisms in barley, Molecular Plant Breeding CRC, Australia.
- Chiapparino E., Lee D., and Donini P. (2004), Genotyping single nucleotide polymorphisms in barley by tetra-primer ARMS-PCR, Genome 47: 414-420 (2004)

- Drenkard, E., Richter, B. G., Rozen, S., Stutius, L. M., Angell, N. A., Mindrinos, M., & Ausubel, F. M. (2000). A Simple Procedure for the Analysis of Single Nucleotide Polymorphisms Facilitates Map-Based Cloning in Arabidopsis, Plant Physiol. Vol. 124
- Jiang G.L, (2013), Molecular Markers and Marker-Assisted Breeding in Plants, Plant Breeding from Laboratories to Fields: Chap 3
- Kim S.G., Lee J.S., Shin S., Bae H.H., Kim J.T., Son BY, Baek SB, (2016), Developing PCR-Based SNP Markers for Distinguishing Korean Waxy Corn F1 hybrids, Plant Breed. Biotech., (August) 4(3):315-323
- Liu R, Maia A.T, Russell R., Caldas C., Ponder B.A. and Ritchie M.E., (2012), Allelespecific expression analysis methods for high-density SNP microarray data, Bioinformatics; Vol. 28, pages 1102– 1108
- Mochida K., Shinozaki K., (2010), Genomics and Bioinformatics Resources for Crop Improvement, Plant Cell Physiol. 51(4): 497–523
- Pandey S., Mishra S., Chandra K. (2019), *Tools* and Resources for SNP Mining in Crop Plants, International Journal of Current Microbiology and Applied Sciences, Vol. 8 Num 01
- Pérez-de-Castro A.M., Vilanova S., Cañizares J., Pascual L, Blanca J.M, Díez M.J, Prohens J, and Picó B., (2012), *Application of Genomic Tools in Plant Breeding*, Current Genomics: 13, 179-195
- Vlk D., Řepkova J., (2016) Application of Next-Generation Sequencing in Plant Breeding, Czech J. Genet. Plant Breed